Números de Feigenbaum 4.6692016090

constantes de Feigenbaum

4.6692016090

Me siento extrañamente atraído por la idea de que los
números de Feigenbaum
podrían traer un orden no lineal a mi vida. La manera
en la que manos y muslos sudan en el momento del desayuno
mi reloj comienza caótico -Yo lo llamo mi efecto mariposa-
Las marmotas suspirarían con alivio ocasional
en los grados de libertad de sus propios días
dentro de los días
¿Has notado cómo los árboles jóvenes se sienten aliviados
de la elección de crecimiento al azar de las ramas en ciernes
y como nuestras venas toman generosamente el sol en la creencia
de la libre voluntad, ciegas a las probabilidades asignadas de Poincaré
en la búsqueda infinita de luz y vida? La vida
tal como la conocemos colgada en una ley de potencia y bailes
en las puntas tenues del árbol de la tierra donde se retuerce constantemente
y alimenta las fuerzas numéricas inevitables de su interior.
Tal vez Mandelbrot tenía razón al definir la superficie de un fractal
como un viaje, dentro de los límites establecidos, verdaderamente infinito.

Lew Watts Lessons for Tangueros

4.6692016090
I am strangely attracted to the thought that the
Feigenbaum Constant
could bring non-linear order to my life. The way
my hands and thighs sweat at breakfast the instant
my chaotic clock starts – I call it my butterfly
effect – groundhogs would sigh with causal relief
at the degrees of freedom of their own days
within days
Have you ever noticed how young trees are relieved
of the choice of growth by randomly budding branches
and veins, like our own, handsomely basking in the belief
of free will, blind to Poincare’s mapped chances
in the endless search for light and life? Life
as we know it hangs on a power law and dances
at the tenuous tips of earth’s tree where it constantly writhes
and feeds inevitable numerical forces within it.
Perhaps Mandelbrot was right that a fractal’s surface defines
a journey, within set boundaries, that is truly infinite.

Los números o constantes de Feigenbaum son dos números reales descubiertos por el matemático y físico Mitchell Feigenbaum en 1975. Ambos expresan cocientes que aparecen en los diagramas de bifurcación de la teoría del caos.
En matemáticas, algunos mapas con un único parámetro lineal exhiben aparentemente un comportamiento aleatorio conocido como caos, cuando el parámetro se encuentra dentro una región. A medida que el parámetro se acerca hacia esta región, el mapa sufre una bifurcación a valores precisos del parámetro. En la primera bifurcación hay un punto estable, después una oscilación entre dos valores, después entre cuatro valores y así sucesivamente.
En 1975, Feigenbaum descubrió que la proporción de la diferencia entre los valores en que estos sucesivos períodos de duplicación bifurcación se producen, tiende a un valor constante, aproximadamente de 4.6692… Posteriormente, obtuvo una demostración matemática de este hecho y luego puso de manifiesto que con la misma constante matemática se produce el mismo comportamiento antes del inicio del caos para una amplia clase de funciones matemáticas. Por primera vez, este resultado universal permitió a los matemáticos dar los primeros pasos hacia el entendimiento del comportamiento aparentemente “aleatorio” de los de sistemas caóticos. Esta “proporción de convergencia” es conocida como la primera constante de Feigenbaum.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s