Poema a Alan Turing

Turing_morfogenesis

Las rayas del tigre, de la cebra o del pez ángel, las manchas del guepardo o la jirafa… El capricho de los estampados nos fascina, pero ¿cómo se forman los patrones espaciales en la piel de algunos animales? ¿Qué fórmulas subyacen bajo la azarosa belleza de los pigmentos?
La generación de todos estos patrones cromáticos caprichosos ¿son fenómenos emergentes sensibles a las condiciones iniciales? ¿interactúan las células pigmentarias sin un control centralizado coordinado, autoorganizándose para crear estas maravillas estéticas?

A veces el álgebra fascina al ADN.

A Alan Mathison Turing

La tristeza,
singular como las rayas de la cebra,
arruga las fronteras en los mapas.
Embelesa la pupila,
la amolda a la curva suave de las dunas.
Arrastra hasta el pelaje
el trazado sinuoso de los deltas,
la línea de la costa.
El oro de los tigres,
la plata de los gatos,
el azabache del pez ángel
fluye en ecuaciones,
sedimenta en los genes,
se dispersa en desiertos felinos.
Todos los pigmentos de trazos singulares
en pieles del paisaje,
en paisajes de piel.
Tigres imitando los surcos de la arena,
archipiélagos copiando las escamas,
jirafas cartógrafas con mapas de las Cícladas,
Polinesia emergiendo en el lomo del guepardo.
A veces el álgebra fascina al ADN.

El matemático Alan Turing, conocido sobre todo por sus contribuciones a la ciencia de la computación y la inteligencia artificial, dedicó los últimos años de su vida a investigar la interacción entre la naturaleza y las matemáticas, buscando una teoría que explicara cómo los organismos adquieren sus formas complejas. Los resultados aparecen en el artículo «The Chemical Basis of Morphogenesis» (Las bases químicas de la morfogénesis) en el que proponía un modelo matemático para explicar cómo se forman los patrones en los organismos biológicos.
Este trabajo pionero fue el inicio de toda una línea de investigación que busca entender cómo funcionan los mecanismos de la naturaleza encontrando ecuaciones que los describan. No sólo revolucionó la comprensión en biología, sino que el modelo ha sido el germen para ayudar a descifrar la formación de patrones en sistemas vivos o en sistemas inertes, tan variados como las dunas de arena, los círculos de hadas.
El enfoque de Turing fue osado y durante décadas su estudio fue olvidado y pasó bastante desapercibido. Actualmente, desde un abordaje transversal e interdisciplinar, que involucra biología, química, física y matemáticas, la ciencia ha ampliado el marco abstracto de su teoría y el legado se ramifica con aplicaciones en infinidad de sistemas.

Morfogénesis

Al final de su vida Turing inició una nueva línea de estudio, todavía más rompedora que la de la computación , sintetizando las matemáticas con la biología. El científico buscó explicar cómo aparecen estructuras y formas de manera espontánea en distintos sistemas físicos, químicos y biológicos, centrándose en cuestiones como la formación de patrones en la piel de los vertebrados, por ejemplo las rayas de las cebras o las manchas de los tigres, introduciendo ecuaciones diferenciales de reacción-difusión.
Con este modelo matemático describía su formación a partir de una sustancia imaginada a la que denominaba morfógeno, aunque este tipo de sustancias no serían descubiertas en laboratorio hasta la década de los 60.
En la introducción al trabajo, Turing describía su propósito en pocas líneas: «En esta sección se describe un modelo matemático del embrión en crecimiento. Este modelo será una simplificación y una idealización, y por consiguiente una falsificación. Cabe esperar que las propiedades en las que se centra la discusión sean las más importantes en el estado actual del conocimiento».
La morfogénesis es, en cierta forma, el principio que activa los mecanismos celulares y biológicos que dan forma a un organismo y, en este trabajo, Turing mostraba que la vida también puede ser expresada en términos de un código, algo que se vería un año más tarde con el descubrimiento de la molécula de ADN, pero cuando él lo planteó todavía no se sabía que las células contenían información hereditaria en sus núcleos.
En 2013 un equipo de investigadores encontró la primera prueba experimental que validaba la teoría de Turing en estructuras similares a células «Testing Turing’s theory of morphogenesis in chemical cells». Los resultados de este estudio refuerzan el carácter de genio visionario de Turing, y llevan sus investigaciones a campos interdisciplinares, que van más allá de la computación.
Aunque todavía no se conocen con detalle todos los mecanismos genéticos implicados en estos procesos, hoy se sabe que la morfogénesis no es solo responsable de la formación de patrones en la pigmentación de los seres vivos, también es responsable de la asimetría izquierda-derecha en los vertebrados, el desarrollo de las extremidades, la ramificación de los pulmones o del sistema circulatorio, entre otros.
Esta entrada es mi aportación al tema Complejidades de #polivulgadores de @hypatiacafe.

Más información:
1. La influencia de Turing en la biología. David Jou
2. Nueva teoría profundiza sobre la creación de patrones de Turing en biología
3. Bridging ecology and physics: Australian fairy circles regenerate following model assumptions on ecohydrological feedbacks
4. Plant water stress, not termite herbivory, causes Namibia’s fairy circles

Ecuación de las rayas de la cebra

Generación de patrones en la naturalez

Generación de patrones en la naturalez

A Alan Mathison Turing

La tristeza,
singular como las rayas de la cebra,
arruga las fronteras en los mapas.
Embelesa la pupila,
la amolda a la curva suave de las dunas.
Arrastra hasta el pelaje
el trazado sinuoso de los deltas,
la línea de la costa.
El oro de los tigres,
la plata de los gatos,
el azabache del pez ángel
fluye en ecuaciones,
sedimenta en los genes,
se dispersa en desiertos felinos.
Todos los pigmentos de trazos singulares
en pieles del paisaje,
en paisajes de piel.
Tigres imitando los surcos de la arena,
archipiélagos copiando las escamas,
jirafas cartógrafas con mapas de las Cícladas,
Polinesia emergiendo en el lomo del guepardo.

A veces el álgebra fascina al ADN.

Sometimes algebra fascinates to DNA
Alan Mathison Turing

Sadness,
singular as zebra stripes,
wrinkle borders on maps.
Enchants the pupil,
molds her to the smooth curve of the dunes.
Drag until the fur
the winding path of deltas
the coastline.
The gold of the tigers,
the silver of the cats,
the deep jet black of angelfish
flows in equations,
settles in the genes
dispersed in feline deserts.
All pigments of singular strokes
in furs landscape,
in landscapes skin.
Tigers imitating the sand furrows,
archipelagos copying the flakes,
cartographer giraffes with maps of the Cyclades,
emerging Polynesia on the back of the cheetah.

Sometimes algebra fascinates to DNA

En Las bases químicas de la Morfogénesis (1952), Alan Turing propuso el origen y desarrollo de las formas en la naturaleza con modelos matemáticos y las describió mediante ecuaciones diferenciales.

En la Ciencia de la Mula Francis explicación sobre la teoría de Turing para la generación de patrones en sistemas biológicos gracias a la morfogénesis.

In The chemical basis of morphogenesis (1952), Alan Turing proposed the origin and development of forms in nature with mathematical models and described by differential equations.